Computes random vectors of the multivariate subgaussian stable distribution for arbitrary alpha, shape matrices, and location vectors. See Nolan (2013).
Arguments
- n
number of observations
- alpha
default to 1 (Cauchy). Must be 0<
alpha
<2- Q
Shape matrix. See Nolan (2013).
- delta
location vector.
- which.stable
defaults to
"libstable4u"
, other option is"stabledist"
. Indicates which package should provide the univariate stable distribution in this production distribution form of a univariate stable and multivariate normal.
Value
Returns the n
by d
matrix containing multivariate subgaussian stable
random variates where d=nrow(Q)
.
References
Nolan JP (2013), Multivariate elliptically contoured stable distributions: theory and estimation. Comput Stat (2013) 28:2067–2089 DOI 10.1007/s00180-013-0396-7
Examples
## generate 10 random variates of a bivariate mvss
rmvss(n=10, alpha=1.71, Q=matrix(c(10,7.5,7.5,10),2))
#> [,1] [,2]
#> [1,] -5.779844757 0.6433924
#> [2,] 5.503686323 2.1582754
#> [3,] -1.452248919 -0.1811842
#> [4,] 0.007002745 -0.4660899
#> [5,] -8.965921190 -7.8356139
#> [6,] 3.224200045 4.4361373
#> [7,] -3.408008189 -9.1435620
#> [8,] -1.855945807 2.0053971
#> [9,] 5.757703456 4.9498872
#> [10,] -0.726099987 4.9042458
## generate 10 random variates of a trivariate mvss
Q <- matrix(c(10,7.5,7.5,7.5,10,7.5,7.5,7.5,10),3)
rmvss(n=10, alpha=1.71, Q=Q)
#> [,1] [,2] [,3]
#> [1,] -0.1848501 1.35918277 0.4681466
#> [2,] -0.7494501 1.64826613 1.5725410
#> [3,] -1.4719466 1.60423095 0.1485459
#> [4,] -8.2181965 -0.01225778 -5.2020751
#> [5,] -4.7699976 2.29265649 -3.3422922
#> [6,] -0.7451184 -1.28517677 -2.2209513
#> [7,] -0.3303047 -2.72379987 -0.7226760
#> [8,] 2.1008274 3.87670850 2.7713000
#> [9,] 4.2320237 1.95445116 4.3933210
#> [10,] -3.0476230 -6.02700635 -3.7677116