Computes probabilities of the multivariate subgaussian stable
distribution for arbitrary limits, alpha, shape matrices, and
location vectors via Monte Carlo (thus the suffix _mc
).
Arguments
- lower
the vector of lower limits of length n.
- upper
the vector of upper limits of length n.
- alpha
default to 1 (Cauchy). Must be 0<alpha<2
- Q
Shape matrix. See Nolan (2013).
- delta
location vector.
- which.stable
defaults to "libstable4u", other option is "stabledist". Indicates which package should provide the univariate stable distribution in this production distribution form of a univariate stable and multivariate normal.
- n
number of random vectors to be drawn for Monte Carlo calculation.
References
Nolan JP (2013), Multivariate elliptically contoured stable distributions: theory and estimation. Comput Stat (2013) 28:2067–2089 DOI 10.1007/s00180-013-0396-7
Examples
## print("mvpd (d=2, alpha=1.71):")
U <- c(1,1)
L <- -U
Q <- matrix(c(10,7.5,7.5,10),2)
mvpd::pmvss_mc(L, U, alpha=1.71, Q=Q, n=1e3)
#> [1] 0.051
mvpd::pmvss (L, U, alpha=1.71, Q=Q)
#> 0.04973221 with absolute error < 4.2e-05
## more accuracy = longer runtime
mvpd::pmvss_mc(L, U, alpha=1.71, Q=Q, n=1e4)
#> [1] 0.0494
U <- c(1,1,1)
L <- -U
Q <- matrix(c(10,7.5,7.5,7.5,10,7.5,7.5,7.5,10),3)
## print("mvpd: (d=3, alpha=1.71):")
mvpd::pmvss_mc(L, U, alpha=1.71, Q=Q, n=1e3)
#> [1] 0.017